IEEE IMFW 2026

Student Filter Tuning Competition

S2P Data Acquisition Guide v1.0

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

Contents
T OVEBIVIEBW ettt et ettt ettt et et s e s e eaeeneneneansanes 3
A S (oY (= To [L T PP U OT U PPPPPIN 3
2. INSTIUMEBNTS . ceuiitiiii ettt s e e e e e e b ea e enaaneens 3
2.1 KeySiGht EBOBOAeiieiieete ettt ettt et e e e e s e e e e eenes 3
2.2 A8IENTESO7TB ..ot 4
3. Measurement and Data ACQUISItION LOZIC....uvuviriiirininiiiiiiiirreeeeeeeeeneneenenenens 4
3.1 Common Configurationcc.ieeiiiiiiiiiii et e e e e eaaes 4
3.2 DaAta INTEEIITY enieniiiii ittt et e et e et e e e e e e e e aaans 4
4. Data Acquisition PYthon SCHPT c..enieiiii et eees 5
4.1 KeySiGhT EDOBOAoeiiii ittt e et e e e e et enseaeneaeneananenns 5
4.2 KeySISNt EBOT7 B .. ittt ettt e e e e e e e e e eenaes 7

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

1. Overview

This document provides detailed information about the Vector Network
Analyzer (VNA) model used in the IMFW 2026 Student Filter Tuning Competition,
along with a sample Python script for acquiring S parameters data. It serves as a
reference for participants who will be using their self-developed computer-aided
tuning (CAT) tools.

2. Prerequisite

e Keysight IO Libraries Suite must be installed.
e [Instrument access via TCP/IP (VISA)

2. Instruments

2.1 Keysight E5080A

Figure 1 E5080A

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

2.2 Agilent E5071B

Figure 2 E5071B

3. Measurement and Data Acquisition Logic

3.1 Common Configuration

Both scripts share the following configuration principles:

VISA communication over TCP/IP

Binary data format: REAL, 64

Little-endian byte order (FORM:BORD SWAP)
Single-sweep synchronization using *OPC?

3.2 Data Integrity

Frequency data and S-parameter data are explicitly alighed

Real and imaginary components are preserved without magnitude/phase
conversion

Output strictly follows Touchstone S2P conventions

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

4. Data Acquisition Python Script
4.1 Keysight ES080A

import pyvisa
import sys
import os

def main():
#VNAIP Address
address ="TCPIP0::172.17.2.2::inst0::INSTR"
try:
rm = pyvisa.ResourceManager()
print(f"Connecting to {address}...")
vna =rm.open_resource(address)
vna.timeout = 60000 # 60 seconds timeout
vna.clear()
idn =vna.query("*IDN?")
print(f"Connected: {idn.strip()}")
print("Configuring data format to REAL,64 (Binary)...")
vna.write(":FORMat:DATA REAL,64")
vna.write(":FORMat:BORDer SWAP")
print("Fetching S2P data using :CALCulate:MEASure:DATA:SNP? ...")
values =vna.query_binary_values(':CALCulate:MEASure:DATA:SNP?', datatype='d’,
is_big_endian=False)
if not values:
print("Error: No data received.")
return
print(f"Received {len(values)} data points.")
raw_output_file = "raw_data.txt"
print(f"Saving raw values to {raw_output_file} for inspection...")
with open(raw_output_file, "w") as f_raw:
foridx, valin enumerate(values):
f_raw.write(f"{idx}: {val\n")
print(f"Saved raw data to {os.path.abspath(raw_output_file)}")
num_points = len(values) // 9
print(f"Detected {num_points} frequency points.")
freqs = values[:num_points]
s_data = values[num_points:]
print(f"First 3 Frequencies: {freqs[:3]}")
num_params =8
if len(s_data) != num_points * num_params:
print(f"Warning: Data length {len(s_data)} does not match expected {num_points *
num_params}")
print("Reformatting data (Transposing blocks)...")
print("Saving to file...")
output_file = "data_e5080.s2p"

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

with open(output_file, "w") as f:
Write Header
f.write("! S2P File generated by Python script\n")
f.write("# Hz S RI R 50\n") # Frequency in Hz, S-parameter, Real-Imaginary, 50 Ohm
f.write("! Freq\tReS11\tImS11\tReS21\tImS21\tReS12\tImS12\tReS22\tImS22\n")
foriinrange(num_points):
Get Frequency
freq = freqsli]
point_values =[]
for pin range(num_params):
val_index =p * num_points +i
if val_index < len(s_data):
point_values.append(s_data[val_index])
else:
point_values.append(0.0) # Should not happen
line =f"{freq:.6f} "+" ".join(f"{val:.6f}" for valin point_values) + "\n"
f.write(line)
ifi==0:
print(f"Preview - First Point Data:\n{line.strip()}")
print(f"Success! S2P data saved to {os.path.abspath(output_file)}")
vna.close()
rm.close()
except pyvisa.VisalOError as e:
print(f"VISA Error: {e}")
except Exception as e:
print(f"Error: {e}")

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

4.2 Keysight E5071B

import pyvisa
import time
import struct
import os

def main():

ip_address ="172.17.2.2"
visa_address = f"TCPIPO::{ip_address}::inst0::INSTR"

channel =1
timeout_ms = 20000
try:

rm = pyvisa.ResourceManager()

print(f"Connecting to {visa_address}...")

vna =rm.open_resource(visa_address)

vha.timeout = timeout_ms

vha.read_termination ='\n'

vha.write_termination ='\n'

idn =vna.query("*IDN?")

print(f"Connected: {idn.strip()}")

print("Initializing measurement...")

vna.write("*CLS") # Clear status

vna.write(f":DISP:WIND{channel}:ACT") # Activate measurement window

print("Configuring traces to S11, S21, S12, S22...")

vna.write(f": CALC{channel}:PAR:COUN 4")

trace_cfg ={1:"S11", 2: "S21", 3: "S12", 4: "S22"}

fort_id, param in trace_cfg.items():
vna.write(f":CALC{channel}:PAR({t_id}:DEF {param}")
vna.write(f":CALC{channel}:PAR{t_id}:SEL")

print("Triggering single sweep...")

vna.write(":ABOR") # Abort any ongoing measurement

vna.write(f":INIT{channel}CONT ON") # Continuous measurement off

vna.write("TRIG:SEQ:SCOP ACT") # Trigger scope to active channel

vna.write(":TRIG:SOUR MAN") # Set trigger source to manual

vna.write(":TRIG:SING") # Trigger a single sweep

Wait for operation complete using *OPC? query

print("Waiting for sweep to complete (*OPC?)...")

vna.query("*OPC?")

Set data format to binary real numbers (64-bit floating point)

print("Configuring data format...")

vna.write("FORM:DATA REAL") # REAL,64 (8 bytes per value)

vna.write("FORM:BORD SWAP") # SWAP = Little Endian (PC format)

print("Reading frequency data...")

freqs = vna.query_binary_values(f":SENS{channel}:FREQ:DATA?",

datatype='d’,

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

is_big_endian=False)
num_points = len(freqs)
print(f"Number of points: {num_points}")
print("Reading S-parameter data (using SDAT per screenshot)...")
param_data = {}
fortrinrange(1, 5):
try:
vna.write(f": CALC{channel}:PAR{tr}:SEL")
param_def = vna.query(f":CALC{channel}:PAR{tr}:DEF?")
param_name = param_def.strip()
print(f"Trace {tr}is {param_name}")
vals = vna.query_binary_values(f":CALC{channel}:DATA:SDAT?",
datatype='d’,
is_big_endian=False)
c_vals =[]
for kinrange(0, len(vals), 2):
c_vals.append((vals[k], vals[k+1]))
param_data[param_name] = c_vals
except Exception as e:
print(f"Could not read Trace {tr}: {e}")
output_file = "data_e5071.s2p"
print(f"Saving to {output_file}...")
with open(output_file, "w") as f:
Write S2P file header
f.write("! S2P File generated by Python script (E5071)\n")
f.write("# Hz S RI R 50\n") # Frequency in Hz, S-params, Real/Imag, 50 Ohm reference
f.write("! Freq ReS11 ImS11 ReS21 ImS21 ReS12 ImS12 ReS22 ImS22\n")
def get_val(p_name, idx):
if p_name in param_data and idx < len(param_data[p_name]):
return param_data[p_name][idx]
return (0.0, 0.0)
foriinrange(num_points):
freq = freqsli]
s11=get_val("S11", i)
s21 =get_val("S21", i)
s12 =get_val("S12", i)
s22 =get_val("S22", i)
line = f"{freq:.6f} "\
f'{s11[0]:.6f} {s11[1]:.6f} "\
f"{s21[0]:.6f} {s21[1]:.6f} "\
f"{s12[0]:.6f} {s12[1]:.6f} "\
f"{s22[0]:.6f} {s22[1]:.6f\n"
f.write(line)
ifi==0:
print(f"Preview - First Point:\n{line.strip()}")

print(f"Done! Saved to {os.path.abspath(output_file)}")
vna.write("FORM:DATA ASC")
vna.close()
rm.close()
except pyvisa.VisalOError as e:
print(f"VISA Error: {e}")

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

except Exception as e:
print(f"Error: {e}")
import traceback
traceback.print_exc()

if _name__=="_main__":
main()

