

IEEE IMFW 2026

Student Filter Tuning Competition

S2P Data Acquisition Guide v1.0

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

2

Contents

1. Overview ... 3

2. Prerequisite ... 3

2. Instruments ... 3

2.1 Keysight E5080A ... 3

2.2 Agilent E5071B ... 4

3. Measurement and Data Acquisition Logic .. 4

3.1 Common Configuration .. 4

3.2 Data Integrity ... 4

4. Data Acquisition Python Script ... 5

4.1 Keysight E5080A ... 5

4.2 Keysight E5071B ... 7

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

3

1. Overview

This document provides detailed information about the Vector Network
Analyzer (VNA) model used in the IMFW 2026 Student Filter Tuning Competition,
along with a sample Python script for acquiring S parameters data. It serves as a
reference for participants who will be using their self-developed computer-aided
tuning (CAT) tools.

2. Prerequisite

• Keysight IO Libraries Suite must be installed.
• Instrument access via TCP/IP (VISA)

2. Instruments

2.1 Keysight E5080A

Figure 1 E5080A

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

4

2.2 Agilent E5071B

Figure 2 E5071B

3. Measurement and Data Acquisition Logic

3.1 Common Configuration

Both scripts share the following configuration principles:

• VISA communication over TCP/IP
• Binary data format: REAL,64
• Little-endian byte order (FORM:BORD SWAP)
• Single-sweep synchronization using *OPC?

3.2 Data Integrity
• Frequency data and S-parameter data are explicitly aligned
• Real and imaginary components are preserved without magnitude/phase

conversion
• Output strictly follows Touchstone S2P conventions

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

5

4. Data Acquisition Python Script

4.1 Keysight E5080A

import pyvisa
import sys
import os

==
E5080A VNA Data Reader
==

def main():
 # VNA IP Address
 address = "TCPIP0::172.17.2.2::inst0::INSTR"
 try:
 rm = pyvisa.ResourceManager()
 print(f"Connecting to {address}...")
 vna = rm.open_resource(address)
 vna.timeout = 60000 # 60 seconds timeout
 vna.clear()
 idn = vna.query("*IDN?")
 print(f"Connected: {idn.strip()}")
 print("Configuring data format to REAL,64 (Binary)...")
 vna.write(":FORMat:DATA REAL,64")
 vna.write(":FORMat:BORDer SWAP")
 print("Fetching S2P data using :CALCulate:MEASure:DATA:SNP? ...")
 values = vna.query_binary_values(':CALCulate:MEASure:DATA:SNP?', datatype='d',
is_big_endian=False)
 if not values:
 print("Error: No data received.")
 return
 print(f"Received {len(values)} data points.")
 raw_output_file = "raw_data.txt"
 print(f"Saving raw values to {raw_output_file} for inspection...")
 with open(raw_output_file, "w") as f_raw:
 for idx, val in enumerate(values):
 f_raw.write(f"{idx}: {val}\n")
 print(f"Saved raw data to {os.path.abspath(raw_output_file)}")
 num_points = len(values) // 9
 print(f"Detected {num_points} frequency points.")
 freqs = values[:num_points]
 s_data = values[num_points:]
 print(f"First 3 Frequencies: {freqs[:3]}")
 num_params = 8
 if len(s_data) != num_points * num_params:
 print(f"Warning: Data length {len(s_data)} does not match expected {num_points *
num_params}")
 print("Reformatting data (Transposing blocks)...")
 print("Saving to file...")
 output_file = "data_e5080.s2p"

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

6

 with open(output_file, "w") as f:
 # Write Header
 f.write("! S2P File generated by Python script\n")
 f.write("# Hz S RI R 50\n") # Frequency in Hz, S-parameter, Real-Imaginary, 50 Ohm
 f.write("! Freq\tReS11\tImS11\tReS21\tImS21\tReS12\tImS12\tReS22\tImS22\n")
 for i in range(num_points):
 # Get Frequency
 freq = freqs[i]
 point_values = []
 for p in range(num_params):
 val_index = p * num_points + i
 if val_index < len(s_data):
 point_values.append(s_data[val_index])
 else:
 point_values.append(0.0) # Should not happen
 line = f"{freq:.6f} " + " ".join(f"{val:.6f}" for val in point_values) + "\n"
 f.write(line)
 if i == 0:
 print(f"Preview - First Point Data:\n{line.strip()}")
 print(f"Success! S2P data saved to {os.path.abspath(output_file)}")
 vna.close()
 rm.close()
 except pyvisa.VisaIOError as e:
 print(f"VISA Error: {e}")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 main()

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

7

4.2 Keysight E5071B

import pyvisa
import time
import struct
import os

==
E5071B VNA Data Reader
==

def main():

 ip_address = "172.17.2.2"
 visa_address = f"TCPIP0::{ip_address}::inst0::INSTR"
 channel = 1
 timeout_ms = 20000
 try:
 rm = pyvisa.ResourceManager()
 print(f"Connecting to {visa_address}...")
 vna = rm.open_resource(visa_address)
 vna.timeout = timeout_ms
 vna.read_termination = '\n'
 vna.write_termination = '\n'
 idn = vna.query("*IDN?")
 print(f"Connected: {idn.strip()}")
 print("Initializing measurement...")
 vna.write("*CLS") # Clear status
 vna.write(f":DISP:WIND{channel}:ACT") # Activate measurement window
 print("Configuring traces to S11, S21, S12, S22...")
 vna.write(f":CALC{channel}:PAR:COUN 4")
 trace_cfg = {1: "S11", 2: "S21", 3: "S12", 4: "S22"}
 for t_id, param in trace_cfg.items():
 vna.write(f":CALC{channel}:PAR{t_id}:DEF {param}")
 vna.write(f":CALC{channel}:PAR{t_id}:SEL")
 print("Triggering single sweep...")
 vna.write(":ABOR") # Abort any ongoing measurement
 vna.write(f":INIT{channel}:CONT ON") # Continuous measurement off
 vna.write("TRIG:SEQ:SCOP ACT") # Trigger scope to active channel
 vna.write(":TRIG:SOUR MAN") # Set trigger source to manual
 vna.write(":TRIG:SING") # Trigger a single sweep
 # Wait for operation complete using *OPC? query
 print("Waiting for sweep to complete (*OPC?)...")
 vna.query("*OPC?")
 # Set data format to binary real numbers (64-bit floating point)
 print("Configuring data format...")
 vna.write("FORM:DATA REAL") # REAL,64 (8 bytes per value)
 vna.write("FORM:BORD SWAP") # SWAP = Little Endian (PC format)
 print("Reading frequency data...")
 freqs = vna.query_binary_values(f":SENS{channel}:FREQ:DATA?",
 datatype='d',

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

8

 is_big_endian=False)
 num_points = len(freqs)
 print(f"Number of points: {num_points}")
 print("Reading S-parameter data (using SDAT per screenshot)...")
 param_data = {}
 for tr in range(1, 5):
 try:
 vna.write(f":CALC{channel}:PAR{tr}:SEL")
 param_def = vna.query(f":CALC{channel}:PAR{tr}:DEF?")
 param_name = param_def.strip()
 print(f"Trace {tr} is {param_name}")
 vals = vna.query_binary_values(f":CALC{channel}:DATA:SDAT?",
 datatype='d',
 is_big_endian=False)
 c_vals = []
 for k in range(0, len(vals), 2):
 c_vals.append((vals[k], vals[k+1]))
 param_data[param_name] = c_vals
 except Exception as e:
 print(f"Could not read Trace {tr}: {e}")
 output_file = "data_e5071.s2p"
 print(f"Saving to {output_file}...")
 with open(output_file, "w") as f:
 # Write S2P file header
 f.write("! S2P File generated by Python script (E5071)\n")
 f.write("# Hz S RI R 50\n") # Frequency in Hz, S-params, Real/Imag, 50 Ohm reference
 f.write("! Freq ReS11 ImS11 ReS21 ImS21 ReS12 ImS12 ReS22 ImS22\n")
 def get_val(p_name, idx):
 if p_name in param_data and idx < len(param_data[p_name]):
 return param_data[p_name][idx]
 return (0.0, 0.0)
 for i in range(num_points):
 freq = freqs[i]
 s11 = get_val("S11", i)
 s21 = get_val("S21", i)
 s12 = get_val("S12", i)
 s22 = get_val("S22", i)
 line = f"{freq:.6f} " \
 f"{s11[0]:.6f} {s11[1]:.6f} " \
 f"{s21[0]:.6f} {s21[1]:.6f} " \
 f"{s12[0]:.6f} {s12[1]:.6f} " \
 f"{s22[0]:.6f} {s22[1]:.6f}\n"
 f.write(line)
 if i == 0:
 print(f"Preview - First Point:\n{line.strip()}")

 print(f"Done! Saved to {os.path.abspath(output_file)}")
 vna.write("FORM:DATA ASC")
 vna.close()
 rm.close()
 except pyvisa.VisaIOError as e:
 print(f"VISA Error: {e}")

IEEE IMFW2026 Student Filter Tuning Competition S2P Data Acquisition Guide v1.0

9

 except Exception as e:
 print(f"Error: {e}")
 import traceback
 traceback.print_exc()

if __name__ == "__main__":
 main()

